ISSN 1600-5368

R. Praveen Kumar,^a S. Athimoolam,^a S. Asath Bahadur^b and R. K. Rajaram^a*

^aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, and ^bArulmigu Kalasalingam College of Engineering, Anand Nagar, Krishnankoil 626 190, India

Correspondence e-mail: rkrsopmku@yahoo.co.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å R factor = 0.047 wR factor = 0.189 Data-to-parameter ratio = 8.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

L-Histidinium sulfate

The title compound, $C_6H_{11}N_3O_2^{2+}\cdot SO_4^{2-}$, crystallizes with two cations and two anions in the asymmetric unit. In both diprotonated histidinium cations, the C^{γ} atom has a *gauche-II* conformation with respect to the amine N atom and it is in a *trans* position to the C atom. An extensive three-dimensional network of intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds links the histidinium cations and sulfate anions, forming a crystal structure in which zigzag (Z1) head-to-tail sequences are observed for both the cations.

Comment

The crystal structures of L-histidine (Madden *et al.*, 1972), L-histidine hydrochloride monohydrate (Fuess *et al.*, 1977), DL-histidine hydrochloride dihydrate (Bennett *et al.*, 1970), L-histidinium dinitrate (Asath Bahadur, 1992), DL-histidinium dinitrate (Bahadur *et al.*, 1991), DL-histidine sulfamate (Asath Bahadur, 1992) and bis(L-histidinium sulfate) trihydrate (Srinivasan *et al.*, 2001) have been reported previously. We present here the crystal structure of the title compound, (I), the anhydrous form of L-histidinium sulfate.

The asymmetric unit of (I) contains two crystallographically independent diprotonated histidinium cations, A and B, containing the atoms N11, N12 and N13, and N21, N22 and N23, respectively (Fig. 1), and two sulfate anions. In A and B, the deviations of the amine N atom from the carboxyl plane are 0.6913 (8) and 0.9273 (8) Å, respectively, while the dihedral angles between the imidazolinium ring and carboxyl planes are 66.4 (2) and 19.5 $(5)^{\circ}$, respectively. This difference in the twisting of the imidazolinium rings leads to the difference in side-chain conformations in the two histidinium cations. The conformation angle ψ^1 is *cis* in both cations. The side-chain conformation angles χ^1 [-63.9 (5)° for A and -53.1 (8)° for B] are in a gauche-II form, resulting in a closed conformation (Pratap et al., 2000). The C^{γ} atom has a trans conformation with respect to the C' atom for both the cations. The conformations χ^{21} and χ^{22} are observed as -28.0 (12) and $156.3 (6)^{\circ}$ for cation A, and 117.6 (9) and $-62.7 (8)^{\circ}$ for cation B (Table 1), respectively, corresponding to those observed in bis(L-histidinium sulfate) trihydrate (Srinivasan et al., 2001).

Received 10 June 2005 Accepted 1 July 2005 Online 6 July 2005

organic papers

The anions play a vital role in hydrogen bonding with the histidinium cations *via* the amine N atom and the N atom of the imidazolium ring. An extensive three-dimensional network of intermolecular $N-H\cdots O$ and $O-H\cdots O$ bonds (Table 2) links the cations and sulfate anions, stabilizing the crystal packing (Fig. 2). Separate zigzag (Z1) head-to-tail sequences of hydrogen-bonded cations A and B are formed along the b axis via the N11-H11A \cdots O1Aⁱⁱ and N21-H21A \cdots O2A^{viii} interactions (see Table 2 for symmetry codes).

Experimental

The title compound was crystallized from an L-histidine and sulfuric acid mixture in the stoichiometric ratio of 1:1 at room temperature by slow evaporation.

 D_m measured by flotation in a liquid mixture of CCl₄ and bromoform

Mo $K\alpha$ radiation

reflections

 $\theta = 9.6-11.8^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$

T = 293 (2) K

 $\begin{aligned} R_{\rm int} &= 0.094\\ \theta_{\rm max} &= 25.0^\circ \end{aligned}$

 $h = 0 \rightarrow 8$

 $k=-1\to 6$

 $l = -30 \rightarrow 30$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

370 Friedel pairs Flack parameter: -0.09 (18)

3 standard reflections

frequency: 60 min

intensity decay: none

Extinction correction: *SHELXL97* Extinction coefficient: 0.131 (13) Absolute structure: Flack (1983),

Block, colourless

 $0.22\,\times\,0.16\,\times\,0.12$ mm

Cell parameters from 25

Crystal data

 $\begin{array}{l} {\rm C_6H_{11}N_3O_2^{2+}\cdot SO_4^{2-}}\\ {M_r}=253.25\\ {\rm Monoclinic,}\ P2_1\\ a=6.8616\ (6)\ {\rm \AA}\\ b=5.8084\ (6)\ {\rm \AA}\\ c=25.6901\ (18)\ {\rm \AA}\\ \beta=90.733\ (8)^{\circ}\\ V=1023.79\ (16)\ {\rm \AA}^3\\ Z=4\\ D_x=1.643\ {\rm Mg\ m^{-3}}\\ D_m=1.642\ {\rm Mg\ m^{-3}} \end{array}$

Data collection

Nonius MACH-3 four-circle diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.774$, $T_{\max} = 0.999$ 2571 measured reflections 2368 independent reflections 2161 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.047$
$wR(F^2) = 0.189$
S = 1.15
2368 reflections
294 parameters
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1269P)^2]$
+ 1.9828P]
where $P = (F_0^2 + 2F_c^2)/3$

Table 1		
Selected geometric parameters	(Å,	°).

O1A-C11	1.216 (10)	O1 <i>B</i> -C11	1.305 (9)
O1A-C11-C12-N11 N11-C12-C13-C14 C11-C12-C13-C14 C12-C13-C14-C15 C12-C13-C14-N13	$\begin{array}{c} -30.1 (9) \\ -63.5 (9) \\ 177.9 (7) \\ -28.0 (12) \\ 156.3 (6) \end{array}$	O2A-C21-C22-N21 N21-C22-C23-C24 C21-C22-C23-C24 C22-C23-C24-C25 C22-C23-C24-N23	$\begin{array}{r} -41.6 (10) \\ -53.1 (8) \\ -171.5 (6) \\ 117.6 (9) \\ -62.7 (8) \end{array}$

Figure 1

View of the asymmetric unit of the title compound, with the atomnumbering scheme and 50% probability displacement ellipsoids.

Figure 2

Packing diagram viewed down the b axis. The intermolecular hydrogen bonds are shown as dashed lines.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1B-H1B\cdots O11^{i}$	0.82	1.73	2.521 (7)	163
$N11-H11A\cdotsO1A^{ii}$	0.89	2.15	2.834 (8)	133
$N11 - H11B \cdot \cdot \cdot O13^{iii}$	0.89	1.88	2.721 (8)	157
$N11 - H11C \cdot \cdot \cdot O12^{iv}$	0.89	1.92	2.757 (10)	156
$N12-H12A\cdots O21^{v}$	0.86	1.87	2.719 (8)	169
$N13-H13\cdots O14^{vi}$	0.86	1.94	2.729 (8)	152
$O2B - H2B \cdots O24^{vii}$	0.82	1.74	2.554 (7)	173
N21-H21 A ···O2 A ^{viii}	0.89	1.93	2.790 (8)	161
$N21 - H21B \cdots O22$	0.89	1.83	2.708 (8)	168
$N21 - H21C \cdot \cdot \cdot O23^{v}$	0.89	1.86	2.679 (8)	152
$N22 - H22A \cdots O13$	0.86	1.85	2.694 (8)	168
$N23-H23\cdots O24^{ix}$	0.86	1.99	2.811 (7)	160

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + 1$; (ii) $-x + 2, y - \frac{1}{2}, -z + 1$; (iii) x + 1, y, z; (iv) x + 1, y + 1, z; (v) x, y - 1, z; (vi) x, y + 1, z; (vii) $-x + 1, y - \frac{1}{2}, -z + 2$; (viii) $-x + 1, y + \frac{1}{2}, -z + 2$; (ix) x - 1, y, z.

All H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93–0.98 Å, N-H = 0.86–0.89 Å, O-H = 0.82 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(\text{parent atom})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97

(Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Bruker, 2000) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank the Department of Science and Technology, Government of India, for establishing a single-crystal diffractometer facility at the School of Physics, Madurai Kamaraj University, Madurai, through the FIST programme.

References

- Asath Bahadur, S. (1992). PhD thesis, Madurai Kamaraj University, Madurai, India.
- Bahadur, S. A., Rajaram, R. K. & Nethaji, M. (1991). Acta Cryst. C47, 1420–1423.

- Bennett, I., Davidson, A. G. H., Harding, M. M. & Morelle, I. (1970). Acta Cryst. B26, 1722–1729.
- Bruker (2000). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fuess, H., Hohlwein, D. & Mason, S. A. (1977). Acta Cryst. B33, 654-659.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg. Germany.
- Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. & Hoy, A. (1972). Acta Cryst. B28, 2382–2389.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Pratap, J. V., Ravishankar, R. & Vijayan, M. (2000). Acta Cryst. B56, 690–696.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Srinivasan, N., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, o607– 0609.